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Perfect Punctured Cyclic Codes

I. Introduction.

This paper presents a class of codes which are obtained from
maximal length shift register codes by deleting or puncturing certain
of their coordinates. The "punctured cyclic codes'" thus obtained are
shown to be optimum, and an encoding and decoding procedure is
outlined. In the demonstration of the optimality of these codes, a
new bound on the maximum distance obtainable with an n, k group code
is derived. This bound is always as good as, and generally better

than, the well-known Plotkin bound (Ref. 4).

II. The Puncturing Procedure.

To begin, it is necessary to prove several theorems.

Theorem 1.
The minimum value for n for which it is possible to obtain an
(n,k) %roup code with minimum distance dO is greater than or equal to

d o+ dy+ ...+ d (l)‘

where d, = di-l/2 if d;_; is evenand d; = (di—l +1)/2 if d;_; is
odd.
Proof.

Designate the {n,k) group code by G. Since G contains an element

with the weight do, it can be written, after suitable row and column




permutations, in the form

O o L[] . . O O . L] L] O

co0...0l1...1

G B

Since Gl is a group and since the identity occurs exactly twice (it
clearly cannot occur more than twice if G is to have minimum distance
do) Gl must be an n - d, k - 1 group with some nonzero minimum
distance dl' Further, because of the second element of G, as written
above, both glhleG and glﬁleG where gleGl, hlsH, El is the complement
of h1 and glhl designates the n-tuple obtained by following the

(n - do)-tuple g, by the d_-tuple h Let djbe the weight of g, and

1.
cy the weight of hl. Then:

w(gl) + w(hl) =d; + cl-:Ezdo

b

w(gl) + W(El) = dl + do - cfEEd

or




Hence

dO
. 5 d° even
g el g
dl_{?.} d +1 (3)
°2 d_ odd

Continuing the same process the following groups are successively

obtained. G,, an (n - d, - dy, k- 2) code with minimum distance

d 2 {1/2} 3, an (n - d, = dy - dy, k - 3) code with minimum distance
d3_ {12/2}; and, in general, Gi,(an (n - dy=dy = «ee = d; 9, k- i)

code with minimum distance diéfi-l/z}’ Let 1 =k - 1 and observe

that for an (m,l) code to have minimum distance d,méd. Then

-d -4, - —d D>
n-d -d -, ...,~-d ,=d

Corollary 1.

The smallest value of n for which an (n,k) code with distance

k-1 £;-1
4 =2 _Zz (1€0,Ek - 1, 45 # 1) (La)

i

can exist is

l(zk 2(2 i.1). (Lb)



Proof.

and, in general:

Thus, since ziék -1, d
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llote that if r(2k'l)z d2 (r - 1)21"l for some integer r, the modified

dyadic expansion

2,1
a = r(2¥?) _Z 2t

Ly

can be obtained resulting in the inequality

£.
nér(zk_l)-z (21 -1)
2.

1

Theorem 2.

If

Zziék, (6)

the bound obtained in Theorem 1 can be achieved.

Proof.

k-1

k_l. Consider the (Qk - 1,k) code with distance 2" -,

Assume d<2

The columns of this code form a group on k generators from which the
L.
identity has been deleted. Now consider a subgroup of 2 T -1 columns

formed from zi of these generators, again deleting the identity. The
2.-1
rows of this subgroup each contain exactly 2 ' ones. Puncturing the



columns of this subgroup from the original group leaves =

L. .
{zk -1-(2 - l%,k code with mimimum distance d = 2571 - 2
Proceeding in this fashion,distinct subgroups of order Zi can be

punctured for each of the values zi so long as the generators of the

subgroups are all distinct. This is possible so long as

<
EEZLi__k.
i

The resulting code then has

symbols and minimum distance

and hence achieves the bound of Theorem 1.

1f r2X124>(r - 1)2% the bound can be achieved if Zziérk in
the modified expansion described above. This is accomplished by
puncturing the necessary number of columns from the r(2k - 1), k code

obtained by repeating the (2k - 1,k) code r times. Since each generator



occurs r times, the necessary number of subgroups can be punctured so

long as
<

The following two sections outline an encoding and decoding procedure

for these '"perfect"” punctured cyclic codes.

III. Encoding.

Let A4 be an (n,k) punctured cyclic code which is optimal, i.e.,

n= 2k - 1 - m where

and

It was shown in the previous section that such codes are obtained

by puncturing or deleting m (2k--1)St roots of unity in the following

fashion:

Choose a5 @5y + « v 5 @, independent elements of GF(Zk). Let Gy



be the additive group using Ups Ups o o o a‘l, as generators, G2 the
additive group using allfl, o e ey a£1+12 as the generators, GB the
additive group a‘1+‘2+1, e o o 3 a£1+‘2+‘3, and so on until all the
necessary groups are formed. After omitting the zero elements in each
group this procedure yields the necessary m = Z(Z‘i ~ 1) nonzero

elements of GF(2k). This is the punctured set.

Now consider the (2k - 1,k) cyclic code. This, of course, is
generated by a primitive kth degree polynomial in the field F of two
elements. To obtain the (n,k) code from this basic cyclic code, the
values corresponding to the punctured coordinates are simply omitted.
Thus, each perfect punctured code uses the primary encoding procedure
and shift register device of the "parent" cyclic code (2k - 1,k) with

1ittle added complication.

Example 1.
Consider the (12,4) code. Here m = 15 - 12 = 3. Choose @y o,
and oy + @, as the punctured elements. The (15,4) can be generated by

the polynomial f(x) = x4 1, a primitive 4th degree polynomial.

The associated difference equation or recursion rule is then O34, +

54 + o= 0. let @ = 35, a, = 56 where B is a primitive 15th root of unity,

6

and note that @y +a,= 35 tg = 39. The encoding for the (15,4) code

2
is as in the following example:

0001 —>000100110101111



Deleting the 5th, 6th, and 9th coordinates, the mapping becomes

0001—0001010011211.

This is the encoding procedure for the (12,4) code with minimum

distance 6 = 20 - 2-.

IV. Decoding.
Let A; be an (ni,k) optimal punctured cyclic code of the type

given by the algorithm for "perfect" codes!

r y) r
- - J =
ni—zk-l-miwheremi—z (29 - 1), Z L=k, 4> L =1,
= =

and let the number of correctable errors, as determined above, be e, -
In other words, the puncturing consists of deleting the set of nonzero
elements of r distinct subgroups of GF(Zk). For such codes, the
decoding procedure is straightforward and may be inherited from any
algebraic decoding procedure used for the parent (2k - 1,k) cyclic
code which enables one to determine the minimum distance explicitly,

regardless of its value.

Such a decoding procedure is the Peterson decoding procedure for
Bose-Chandhure codes (Ref. 3). This is a technique which determines

the nearest code word (in the Hamming distance sense) if it exists.



To begin, perfect punctured codes are divided into classes in

accordance with the number of groups which were punctured.

m, = 2 1. 1, ‘1 k. This is the simplest case; only one group

with ‘l generators is punctured. For such a class, the decoding
proceeds in two steps.
Step 1:
: 4-1

Since the weight of the punctured mi-tuple is either O or 2 R
consider two separate cases. In step 1 it is assumed that the weight
of the punctured word is zero, i.e., all punctured positions are zero.
The received word of length n, is then expanded into a word of length
(Zk - 1) by placing O's in each of the punctured positions and the
received symbols ay in their respective unpunctured positions. Then
the word is decoded as though it were a full-length unpunctured word.
If possible, the nearest word is determined, and the distance dl
between the received word and the unpunctured position of the "decoded"

word is recorded.

Step 2:
Ll—l
Assume that the punctured position has weight 2 . In this
y 2
case, place the symbol one in the 2 1. 1 punctured positions. This

£,-1
immediately introduces an error of order 2 1o 1 in the calculation.

Again decode, if possible, the expanded word, and record the distance
d2 between the unpunctured positions of the decoded word and the

received word.

10.



11.

Decision:

Compare d1 and d2 obtained in steps 1 and 2. Choose the word
with min (dl,d2) = d. If d is not greater than the number of
correctable errors e the received word can be uniquely decoded and is

that determined in step 1 if dl<d and in step 2 if dl>d . Note

2 2

1 and d2 cannot both be less than or equal to €5 but if e or

fewer errors occur in transmission, one of them must be less than €.

that d

Class II:

m,=2"-«1+2%-1 zl>12,zl+125k

The procedure is as in Class I, except that the decoding procedure

is divided into 4 steps.

Step 1:

Assume all punctured coordinates are zero.

Step 2:
j/
Assume the 2 1 1 punctured coordinates corresponding to the
£
first punctured group are zero and the 2 2 _ 1 punctured coordinates

corresponding to the second are one.

Step 3:

Reverse the roles of zero and one in step 2.

Step 4:

Assume all punctured coordinates are one.



12.

As before, it is necessary to attempt to decode the words formed
in each step and to determine the distance di between the decoded words
and the received word (at the unpunctured positions only). That word
is chosen which results in the minimum distance di’ Again, if e; or

fewer errors were committed, the decoding is unique.

lass r:

L.
In general for m = Z 2t -1, Z Liék, there will be 2° steps
i=1 i=1

to take. However since zi> zi+l’ and Z !,i‘—‘-k, r remains relatively
small for moderate values of k. In fact, it may be easily verified

that r<3/5i1 Even for large values of k, this procedure may be completely
practical, since most useful codes may be obtained by deleting only one

or two groups from the 2k - 1,k code.

Generalization to g-ary codes:

The development of this section closely parallels that of Section I

and will therefore be somewhat condensed.

Theorem 1!,

The minimum value of n for which it is possible to obtain an (n,k)
group code over the field of q elements with minimum distance dO is
greater than or equal to

d +d + L] L] L] L] +d

01 d-1
d
d i-1 .
T if q‘ ds
where di = a = q i-1 (8)
di-l

q ]+ 1 otherwise



Proof:
Let G represent the n,k group codes under consideration.
Since G has minimum distance dO it can be written, after suitable

column permutation, in the form

OO-.-..O O O'oo-OO

O o ¢ e s o o O of. X: o o o o o
i i 1
1 2 dO
G i,
00.....0 (alai ) (°’1°'i ). . .(alai )
1 2 dO
o Gy oy iy
G = O O ¢ e o e O (O'2Q'i ) (020'1 )' . -(Q‘2di ) (9)
1 2 do
@G o,
00, ....0 (aéai ) (aéai ). . '(QBQi )
1 2 do
00. .'. . « 0 . : . .
(aq_ 20'11) ( - 2012) (o:q_zaldo)
?-2%1 -2t




where O,l,ai,az, R N are the elements of the field, Gl and G2

are groups of order k-1 (the identity is written explicitly), H, is

the coset of G2 obtained by adding the element o. . « « + . a: to
i, 14
0

each of the elements of GQ and aiﬂz is the coset obtained by multiplying

each of the terms of H2 by ;. Note that since G has minimum weight do,

there exists an element O . . . . O v, @ + &« « . o, such that none
) 14
0

of the last dO terms are zero.

Now, select an element 8 from G{other than 0O ., . . . O g Oy e e ey
12

or one of its multiples) such that aq of the first n-d terms are non-zero

4

and a, of the last do terms are non—zero. Clearly,

2

a1+355=do. (10)

In addition, it will now be shown that

af> (11)

where ¢ is the maximum number of agreements between the last dO terms

of 8 and the corresponding terms of any of the vectors

o, O ¢« o o o O
i i i
1 2 dO
1 2 dO
(o o Mo o ) o (@ o ).
q-271," e-2i, a-2"1y

0



15.

Since a, of the final dO terms of g are norn-zero and since each

element of the field occurs exactly one in each position of the

elements (12), the total number of agreements between these a,

non-zero terms and the corresponding terms of all of the g-1 elements

The average number of agreements is then f_g_ and
g1

(12) is just ay.

cx

a1

Thus, if a vector corresponding to one of the elements (12) for

which c-E:a_Z_ is selected and subtracted from gy> there will still be

a1
ay non-zero terms in this first n-do terms of the resulting vector
and the last dO terms will contain exactly do-c non-zero terms, Thus
=
alﬂo—c do

a a
e a2 =2
1 qQ-1) g-1

as was stated above. Combining the inequalities (10) and (11) yields

the result

The group Gl’ then, is an (n—do,k-l) code over a field of q elements

with the property that d1 = aF{dO} . By repeating this argument, as
q



before, the statement of the theorem follows.

Corollary 1':
The smallest value of n for which an (n,k) code over the field of

q elements with distance

2.-1
d= BO qk-l - Zaiq N ‘Bi =0,1,2, . ., Q"]) (13a)

1=y =k-1 £
( !’J ? ZJ 4 m)

can exist is

2.
_Bo(dD) ) (a1
= R (13b)

n
Proof':

This proof is completely analogous to that for q = 2 and hence

will be omitted.

To obtain an analog to Theorem 2, consider the (qk - 1,k) maximal
length shift register code over the g-ary alphabet with minimum distance
d=(q~-1) qk“l. The columns of this code form an algebra on k
generators over the finite field GF(q) from which the identity has been
deleted. Now consider a subalgebra of qz columns formed from £ of
these generators, again deleting the identity. The rows of this
subalgebra each contain exactly ql—1 - 1 zerces. Puncturing the columns

of this subalgebra from the original algebra leaves a (qk -1- (qz - 1),k)

code with minimum distance d = (qk-'l - qtﬁl)(q - 1).

16.



In addition, one may divide the algebra into (q - 1) classes with
the condition that if a is in one class, no scalar multiple of a is in
the same class. The weight of any row in a subclass is 1/(q - 1)
times the weight of a full row of the code. Similarly, the same
statement is applicable to any subalgebra of any dimension., Thus
another puncturing presents itself as a possibility. Let Bk be a
number less than q -~ 1, the number of subclasses of the k-dimensional
algebra. Puncturing the columns of these Bk subclasses leaves a
[(q -1-8)(d"-1/q- l),k)] code with minimum distance d = (g - 1 -
Sk)(qk-l). Similarly consider B, of the subclasses of an 4;-dimensional
subalgebra. Then an analogous pu;cturing yields a [qg -1- (qzi - l/q -1)
k-1

‘ ,k] code with minimum distance d = q
i

sufficient (though not necessary) condition for attaining the bound of

4
8 (q -1) - BL q /q - 1. A

Theorem 1' may now be formulated:

Theorem 2!':

L2.-1
k-1
Let d = 850 - ) Biq 8,=0,1,2, .. (q=1)

then if eoémax B; and Z!,lék 1fzjék -1, 2 # zj 1 # 3)

£
k
the bound, n = BO'Q%;f%%; - EZ}i fa_-1) is achieved by puncturing

i
q-1°
columns as described above, In this case there are obviously enough

generators, algebras and subalgebras to puncture,

17.



